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Full-field optical measurement of curvatures in ultra-thin-film–substrate
systems in the range of geometrically nonlinear deformations
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This article describes coherent gradient sensing~CGS! as an optical, full-field, real-time,
nonintrusive, and noncontact technique for the measurement of curvatures and nonuniform
curvature changes in film–substrate systems. The technique is applied to the study of curvature
fields in thin Al films~6 mm! deposited on thin circular silicon wafers~105mm! of ‘‘large’’ in-plane
dimensions~50.8 mm in diameter! subjected to thermal loading histories. The loading and geometry
is such that the system experiences deformations that are clearly within the nonlinear range. The
discussion is focused on investigating the limits of the range of the linear relationship between the
thermally induced mismatch strain and the substrate curvature, on the degree to which the substrate
curvature becomes spatially nonuniform in the range of geometrically nonlinear deformation, and
finally, on the bifurcation of deformation mode from axial symmetry to asymmetry with increasing
mismatch strain. Results obtained on the basis of both simple models and more-detailed
finite-element simulations are compared with the full-field CGS measurements with the purpose of
validating the analytical and numerical models. ©2001 American Institute of Physics.
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I. INTRODUCTION

A material configuration of central importance in micr
electronics, optoelectronics, and thermal barrier coating te
nology, among other areas of application, is a thin film
one material deposited onto a substrate of another mate
Fabrication of such a structure inevitably gives rise to str
in the film due to lattice mismatch, differing coefficients
thermal expansion, chemical reactions, or other physica
fects. Experimental techniques for stress measuremen
thin films, which are based on the observation of subst
curvature induced by this stress, are gaining increasin
widespread use as diagnostic procedures. Applications
metal films on semiconductor substrates are discussed
Flinn1 and Nix,2 and recent refinements forin situ measure-
ments of curvature during vapor deposition are described
Floro and co-workers.3–5

Most data on substrate curvature are interpreted on
basis of the classical Stoney formula.6 In its most basic form,
this formula provides an expression for the curvaturekSt of
the substrate in terms of the film membrane forcef ~force per
unit distance! due to stress as

kSt5
6 f

hs
2Ms

, ~1!

wherehs is the substrate thickness,Ms is its biaxial elastic
modulus, andf is the membrane tension in the film. Stated
this way, formula~1! involves the elastic properties of th

a!Electronic mail: rosakis@atlantis.caltech.edu
b!Electronic mail: freund@engin.brown.edu
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substrate, the substrate thicknesshs , and the through-the-
thickness variation of mismatch strain only throughf. For-
mula ~1! follows from analysis of a film–substrate syste
which is based on several linearity assumptions.7–10 Current
measurement technology is being applied to ever-thin
substrates in order to extend the sensitivity range of the m
surements, particularly in research on fundamental stres
sues during deposition. For example,in situ measurements o
stress during epitaxial growth of a silicon–germanium all
onto silicon crystals, substrates only a few hundred micr
thick with lateral extent of a few centimeters, are curren
being used. The aspect ratios~lateral dimension/thickness! of
such substrates fall within the range of 50–1000, so they
‘‘thin structures’’ indeed. A consequence is that states
deformation are readily achieved for whichnonlinear geo-
metrical effectscome into play. Thus, the purpose here is
discuss aspects of curvature due to a bonded, stressed
film which are relevant to the interpretation of substrate c
vature experiments. The discussion focuses first on axi
symmetric, nonlinear deformations, and then on deform
tions which may be asymmetric. To make the discuss
definite, attention will be restricted to a system with a circ
lar substrate of radiusR, the only lateral dimension of con
sequence. It will be assumed that the film material is a
homogeneous and the stress in the film is uniform throu
out. Arbitrary through the thickness variation of properties
mismatch strain was considered by Freund7 and by Finot and
Suresh.10

A polar section of the system is shown in Fig. 1. T
elastic biaxial modulus and Poisson ratio of the film a
M f ,n f and similarly for the substrate. Cylindrical (r ,u,z)
6 © 2001 American Institute of Physics
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6117J. Appl. Phys., Vol. 89, No. 11, 1 June 2001 Lee, Rosakis, and Freund
coordinates are adopted with the origin on the geometr
midplane of the substrate. The mismatch strain, which is
stress-free strain that would render the film compatible w
the substrate, is denoted by«m . The associated mismatc
stress issm5M f«m and the membrane forcef 5M f«mhf in
this case.

Although thin-film behavior has emerged as a resea
area in mechanics only recently, the general issue of la
deformation of thin plates has been of interest for ma
years. In addition to those references cited above, Friedr
and Stoker11,12 studied the axially symmetric postbucklin
behavior of a thin, circular plate subjected to uniform i
plane compression along its edge; Wittrick13 considered the
axially symmetric snap-through buckling of a bimetallic di
under temperature change; and Hyer14 described the warping
of layered composite materials due to residual stress. In
article, we first summarize the results of a recent analysis
Freund,15 who modeled the complex nonlinear deformati
behavior of thin-film/substrate structures. We then comp
the analytical predictions with real-time experimental me
surements. It should be noted at this point that nonlin
distortions of large wafers were investigated experiment
by Finot et al.,16 who used a geometrical grid projectio
method to record curvatures resulting from a variety of de
sition conditions and geometrical parameters.

Techniques based on optical interferometry offer mu
promise as a means for real-time, remote, high-resolut
full-field measurements of curvature and curvature chan
However, standard interferometric techniques~e.g.,
Twyman–Green interferometer! are sensitive to rigid-body
rotation and displacement of the specimen surface, and
are very vibration sensitive. Moreover, since these interfe
metric techniques measure the surface topography, two
cessive differentiations of the experimental data are requ
to obtain curvature. This often results in error levels that
unacceptable, and drastically reduces the potential of s
methods for accurate stress measurement in thin-film st
tures. Rosakiset al.17 have employed the optical techniqu
of coherent gradient sensing~CGS! to measure the entire
curvature tensor fields in thin-film and micromechanic
structures. The CGS technique offers significant advanta
over other currently used curvature measurement techniq
These advantages include rigid-body motion insensitiv
and the associated vibration insensitivity and accurate
full-field measurement of all components of the curvatu
tensor as well asin situ and real-time capabilities. In th
second part of this study, we use CGS to record the evolu
of curvature fields in the nonlinear deformation regime

FIG. 1. Axial section of the film–substrate system showing the polar co
dinates and the physical dimensions: film thicknesshf , substrate thickness
hs , and substrate radiusR.
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thin-film/substrate structures subjected to thermal loadi
The experimental measurements provide bench-mark c
parisons for the validation of the assumptions involved
Freund’s15 nonlinear analysis and of finite-element mode
used in the current investigation.

II. AXIALLY SYMMETRIC DEFORMATION

For axially symmetric deformation of the substrate, t
only nonzero stress components in polar coordinates
s rr (r ,z) and suu(r ,z). For the case of thin plate-like con
figurations ~see Fig. 1!, the Kirchhoff hypothesis can be
adopted, which implies that material lines initially normal
the substrate midplane remain so during deformation. T
strain components can then be written in terms of the d
placement componentsur(r ),uz(r ) of the substrate midplane
as

« rr ~r ,z!5ur8~r !1
uz8~r !2

2
2zuz9~r !1«m ,

~2!

«uu5
ur~r !

r
2z

uz8~r !

r
1«m ,

where the prime denotes differentiation with respect tor.
The definition of mismatch strain is extended so that«m

[0 in the substrate; in this case, Eq.~2! applies for both
materials. Expressions~2! are the usual linear-strain
displacement relations for axially symmetric deformation
a circular plate, augmented by the termuz8(r )2/2 to account
for midplane stretching due to finite rotation of the substr
normal about an axis in theu direction. This nonlinear aspec
of the strain-displacement relations is the essential featur
the von Karman elastic-plate theory.

As a first calculation, parametric forms ofur(r ),uz(r )
are adopted. The principle of stationary potential energy
then invoked to determine optimal values of the parame
involved. Consider the particular choiceur5«0r 1«1r 3, uz

5kr 2/2, which preserves the constant spherical curvat
feature of the small deflection analysis as an assumptio
the nonlinear range. The total potential energy is then a fu
tion of the parameters«0 , «1 , and k. Following Freund,15

the requirement that it be stationary with respect to th
variables leads to the relationship

S5K b11~12ns!K
2c, ~3!

for the case whenhf!hs , whereS53«mR2hfM f /2hs
3Ms is

the normalized mismatch strain andK5R2k/4hs is the nor-
malized curvature. This result is shown graphically in Fig.
along with the corresponding linear relationship~Stoney for-
mula! betweenK andS. This result implies that the system
parameters for whichS.0.3 result in a response in the rang
of nonlinear geometrical effects. Quantitative conclusions
garding the behavior within the nonlinear range cannot
drawn at this point because of the uncertainty of the sev
constraint implied by the assumption of spatially unifor
curvature. This constraint is relaxed in the numerical analy
discussed below.

For the case whenhf!hs , and when the film strain is
not changed appreciably as a result of substrate deforma

r-
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6118 J. Appl. Phys., Vol. 89, No. 11, 1 June 2001 Lee, Rosakis, and Freund
the equilibrium equations in terms of midplane displac
ments have been studied by Friedrichs and Stoker12 in the
context of postbuckling behavior of circular plates. Som
useful observations follow from examination of these nonl
ear equations. For example, suppose the solution for the
placementsur(r ),uz(r ) is known for some values of the sys
tem parameters«m , Ms , andM f and for some dimension
R, hf , andhs . If all dimensions are then scaled by a positi
factor, saya, holding the other system parameters fixed,
displacements for the scaled system areaur(r ) andauz(r ).
Thus, the solutions of the nonlinear equations scale with
absolute size of the structure, so only one size need be
sidered for a complete description~at a given aspect ratio!.
Consequently, all lengths can be normalized with respec
substrate radiusR.

A second observation is that the parameters«m , M f ,
andhf enter only through the combination«mM fhf , which
is the membrane forcef in the film. All situations with a
certain value off are identical at this level of approximation
no matter what values the individual parameters«m , M f ,
and hf may assume. For this reason, the dimensionless
rameterS, which was introduced above and which involv
these parameters in the same combination, will be adopte
represent the magnitude of mismatch strain in the subseq
discussion.

The deformation is analyzed in greater detail by me
of the Abaqus finite-element code. A result in the form
level curves of curvatureK in the (r /R,S) plane is shown in
Fig. 3 for the case whenhs /hf520 andR/hs550. The cur-
vature is essentially constant over the entire substrate
given level of mismatch strain as long as the level curves
curvature are parallel to the radial distance axis for 0<r /R
<1. This is indeed the case for normalized curvature vary
between zero and a value of about 0.3. Because of the
malization convention for curvature and mismatch str
adopted here, this implies that the corresponding normal
mismatch strain is also in the range 0<S<0.3. Thus, the
implied limit on the range of linear response found here
consistent with the result represented in Fig. 2. Similar c
clusions were reported by Finot and Suresh16 on the basis of
nonlinear finite-element calculations.

As the normalized mismatch strainS is increased above

FIG. 2. Graph of the relationship between normalized curvatureK and nor-
malized mismatch strainS implied by Eq.~3! with n51/4 for large deflec-
tion with spatially uniform substrate curvature. The dashed line repres
the linear relationship implied by small deflection theory.
Downloaded 21 Mar 2002 to 131.215.99.202. Redistribution subject to A
-

e
-
is-

e

e
n-

to

a-

to
nt

s
f

t a
f

g
or-
n
d

s
-

the value 0.3, the curvature distribution becomes incre
ingly nonuniform. The general trend is that the curvatu
assumes values substantiallybelowthe average curvature fo
portions of the substrate near its center, and it takes on va
substantiallyabovethe average value near the periphery
the substrate. For example, for a normalized mismatch st
of S52, the normalized curvature varies from aboutK(0)
'0.55 at the substrate center to a value of aboutK(R)
'1.3 at the substrate edge.

The feature that level curves of curvature in Fig. 3 eve
tually assume a tangent direction which is parallel to
strain axis nearr /R50 implies that the curvature near th
center of the wafer first increases as the spatially unifo
strainS increases. Eventually, the curvature reaches a m
mum value at some level ofS, and then decreases with fu
ther increase in strain beyond this level. This behavior i
direct consequence of the nonlinearity of the deformation

III. BIFURCATION OF EQUILIBRIUM SHAPES

Imagine the mismatch strain in the film being increas
in magnitude from the zero initial value. For relatively sma
values, the deformed shape of the substrate is essen
spherical as long as the response remains within the lin
range. Once«m becomes large enough in magnitude to bri
the system into the range of a geometrically nonlinear
sponse, the deformed shape may continue to be axially s
metric. However, this deformation mode requires that
substrate must deform in extension as well as in bending,
the stiffness against such deformation is very large compa
to the bending stiffness at comparable levels of surf
strain. On the other hand,cylindrical bending, or generalized
plane strain bending, can occur with no midplane extens
This suggests that, at some point as the magnitude of«m

increases, the system may begin a transition from axi
symmetric deformation toward cylindrical bending deform
tion. Such a transition would represent abifurcationof equi-
librium states.

Before proceeding with a full numerical simulation,
simple variational approach is taken. The transverse defl

tsFIG. 3. Contour plot showing level curves of normalized curvatureK(r ) for
axially symmetric deformation in the plane with normalized distancer /R as
coordinate on the horizontal axis and normalized mismatch strainS on the
vertical axis for common Poisson ration51/4. Uniform curvature requires
the level curves to be parallel to the horizontal axis.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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tion of the substrate midplane is assumed to beuz(x,y)
5(kxx

21kyy
2)/2, wherekx and ky are the~spatially uni-

form! principal curvatures of the deformed shape. A str
distribution consistent with this deflection, which accoun
for midplane stretching, is also assumed.15 The principle of
stationary potential energy is then invoked to determine
relationship of the principal curvatures to the system para
eters, which is necessary for the system to be in equilibri
This development follows the work of Masters an
Salamon18 and Salamon and Masters.19 A more-detailed ex-
amination of bifurcation on the basis of a finite-eleme
simulation withouta priori restrictions on the deformatio
beyond the Kirchhoff hypothesis is then described.

The goal in this development is to extract fairly simp
analytical results, which are merely representative of
phenomena of interest. As before, attention is restricted
systems for which the elastic response of both the film
substrate materials is isotropic, and the moduli of the fi
and substrate are the same. While it is not necessary to p
restrictions on the relative thicknesshf /hs for this develop-
ment, results are presented under the assumption thathf /hs

!1 in order to be consistent with other parts of the disc
sion.

For the present case, the equilibrium conditions can
obtained in closed form.18,20 In particular, for a given mis-
match strain and geometric parameters, a relationship
tweenkx and ky is obtained, which represents the locus
equilibrium states for the system in the plane ofkx vs ky ,
namely,

~kx2ky!bkxkyR
4~11n!216~hs1hf !

2c50, ~4!

where n is the common Poisson ratio. This result is exa
within the class of deformations under consideration. An i
portant consequence of admitting the possibility of finite d
flections is evident in Eq.~4!. It is clear that a spherica
deformed shape of the system, withkx5ky , is still an equi-
librium shape~although the magnitude of the spherical cu
vature differs significantly from that predicted on the basis
the small deflection theory for a given mismatch strain,
was noted in the preceding section!. The new feature is the
possibility of a secondasymmetricequilibrium shape repre
sented by the vanishing of the term in square bracket
Eq. ~4!.

The locus of possible equilibrium curvatures is plotted
Fig. 4 ~solid curves! for n51/4. The straight line bisecting
the quadrant represents the spherical shape withkx5ky .
The curved branch of the locus is obtained by setting
second factor in Eq.~4! equal to zero, and it represents asy
metric deformation, that is,kxÞky . The intersection point
of these two branches is a bifurcation point. For values
spherical curvature on the branch withkx5ky , which are
less than the curvature at the bifurcation point, it is fou
that the equilibrium value of potential energy is a local mi
mum under variations in curvature. Thus, that part of
symmetric branch representsstable equilibrium configura-
tions. On the other hand, for values of spherical curvat
which are larger than the curvature at bifurcation, the stati
ary value of potential energy is found to be a saddle point
that part of the symmetric branch representsunstableequi-
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librium configurations. All equilibrium configurations on th
asymmetric branch in Fig. 4~except that corresponding t
the bifurcation point itself! are found to be stable configura
tions.

If the strain magnitude is increased beyond the va
corresponding to the bifurcation point, then the deformat
becomes asymmetric with the curvature increasing in
direction and decreasing in the orthogonal direction. T
principal directions of the asymmetric deformation are co
pletely arbitrary, of course. The bifurcation is stable, in t
sense that an increasing strain is required to move the e
librium configuration away from the bifurcation point alon
the asymmetric branch in Fig. 4. As the strain magnitu
increases further, the equilibrium shapes become more
more asymmetric, approaching a cylindrical-limiting sha
with kx /ky→0 or → `.

The variation of mismatch strain«m along the equilib-
rium paths corresponding to the equilibrium configurations
also illustrated in Fig. 4~dashed curves!. Again, the mis-
match strain is normalized in such a way that the graph
universal, for the choice ofn51/4. The nonlinear relation-
ship between curvature and mismatch strain prior to bifur
tion is identical to that shown in Fig. 2.

The results in Fig. 4 are valid for the full range of ge
metrical parameters for systems which meet the general c
acteristics of compliant free-standing layers. To give an i
pression of the magnitudes of parameters involved, cons
the state represented by the bifurcation point in Fig. 4. If
geometry of the system is characterized byhs /R, the ratio of
substrate thickness to radius, and byhf /hs , the ratio of film
thickness to substrate thickness, then the normalized sp
cal curvature and mismatch strain at the bifurcation point
given by

K ~bif!5
1

A11n
, S~bif!5

2

~11n!3/2. ~5!

For n51/4, the value ofS(bif) is about 1.43.
The foregoing bifurcation analysis is based on the

sumption of spherical curvature of the substrate midpla

FIG. 4. Relationship between normalized principal curvaturesKx and Ky

implied by equilibrium condition~4! for n51/4. The intersection between
the branchKx5Ky corresponding to spherical curvature and the hyperbo
branch is the bifurcation point.
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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6120 J. Appl. Phys., Vol. 89, No. 11, 1 June 2001 Lee, Rosakis, and Freund
prior to bifurcation and on the assumed transverse deflec
with spatially uniform principal curvatures following bifur
cation. Therefore, the bifurcation analysis is repeated with
a priori assumptions on the deformed shape of the subs
midplane by means of the numerical finite-element meth
The calculations were carried out under the assumption
the deformation has at least one plane of reflective sym
try. The midplane of the 180° sector of the substrate w
covered with a regular radial–circumferential mesh.
eight-noded plate element was prescribed in each mesh
ment. The element adopted admits through-the-thickn
variation of material properties, and the film–substrate s
tem was defined by prescribing the appropriate variati
Mismatch strain was imposed by specifying a coefficient
thermal expansion for the film material relative to the su
strate material, and by making temperature the imposed lo
ing parameter. The temperature was gradually increa
from the zero-initial value, and the equilibrium shape f
large deflections was computed.

To precipitate stable deformation beyond the point
bifurcation, a slight imperfection in the system was intr
duced in the form of an anisotropic mismatch strain. Ty
cally, the mismatch strain in thex direction~y direction! was
taken to be 0.01% larger~smaller! than the value of the
nominal«m . With this level of imperfection, the deformatio
prior to bifurcation was essentially indistinguishable fro
the results based on ana priori assumption of axial symme
try, the bifurcation point was sharply defined in each ca
and reproducible from case to case, and the postbifurca
behavior was stable and reproducible.

The general response observed as the mismatch s
was increased was a range of axially symmetric deformat
with the substrate midplane curvature becoming ever m
nonuniform. Then, over a very narrow range of values
nominal mismatch strain, the midplane showed first a sli
waviness in the circumferential direction~compared to the
substrate thickness! followed by large amplitude waviness i
the circumferential direction. This behavior is illustrated
Fig. 5, which shows plots of the transverse deflection n

FIG. 5. Plots of normalized transverse deflectionuz(R,u)/hs at nine points
around the circumference of the substrate midplane vs normalized mism
strain S for n51/4. These results were obtained by finite-element calcu
tion, and they involve noa priori assumptions on the deformed shape. T
dotted curves represent the equivalent result with a61% anisotropy in the
mismatch strain.
Downloaded 21 Mar 2002 to 131.215.99.202. Redistribution subject to A
n

ut
te

d.
at
e-
s

eg-
ss
s-
.
f
-
d-
ed
r

f
-
-

e
on

ain
n,
re
f
t

r-

malized by substrate thicknesshs at nine points around the
outer edge of the substrate versus normalized mism
strain S. As S increases from zero, all nine points at fir
experience the same transverse deflection within the res
tion of a graph. AsS increases through the value of abo
1.77, a fairly sharp transition in response occurs. The defl
tions at the points onr 5R at u50 andu5p increase dra-
matically for a very small increase inS, while the deflection
at the point onu5p/2 decreases dramatically. The defle
tions at the points onr 5R at u5p/4 and 3p/4, on the other
hand, remain nearly unchanged.

It is noted that the behavior of thin structures of the ki
being discussed here is strongly sensitive to imperfection
the system. To illustrate the point in the present context,
calculation which led to the solid curves in Fig. 5 was redo
with a mismatch strain that is 1% larger~smaller! than the
nominal value«m in the x direction ~y direction!. The result
is shown by dotted curves in Fig. 5, where it can be seen
a 1% imperfection in mismatch strain obliterates the sh
bifurcation transition. Instead, the system undergoes a lo
gradual transition from axially symmetric deformation
asymmetric deformation asS increases. There are other si
nificant features of the behavior illustrated in Fig. 5. Amo
these are~i! the axially symmetric response is nonlinear f
values ofS beyond about 0.3, consistent with the behav
observed in Fig. 3;~ii ! the maximum deflection at the sub
strate periphery reaches a value of about two times the
strate thickness before bifurcation occurs; and~iii ! the post-
bifurcation deformation becomes more like cylindric
bending asS increases further beyond 1.77.

Another noteworthy aspect of the result illustrated
Fig. 5 is the apparent insensitivity of the bifurcation resu
to variations in the aspect ratio of the substrate. Calculati
were carried out forR/hs550, 100, and 200. The plots fo
the three cases, when expressed in terms of the norma
parameters adopted in Fig. 5, are virtually indistinguishab
The behavior of a given system at a fixed level of misma
strain«m will indeed depend on the aspect ratioR/hs . How-
ever, with the rather natural normalization embodied in
definition of S, the horizontal scale in Fig. 5 can be viewe
as strain at fixed aspect ratio~as is done here! or, equiva-
lently, as aspect ratio at fixed strain. In other words,
sensitivity of behavior to both mismatch strain and asp
ratio is captured by the single parameterS. Note that the
ratioshs /hf520 andMs /M f51 were maintained in all cal-
culations so that the film is always relatively thin and t
effects of modulus difference are not considered.

IV. FULL-FIELD CURVATURE MEASUREMENT USING
COHERENT GRADIENT SENSING

Figure 6 shows a schematic of the CGS setup in refl
tion. A coherent, collimated laser beam is directed to
specularly reflecting specimen surface by means of a b
splitter. The reflected beam from the specimen then pa
through the beam splitter and is then incident upon a pai
identical high-density~40 lines/mm! Ronchi gratings,G1 and
G2 , separated by a distanceD. The diffracted orders from
the two grating are spatially filtered using a filtering lens
form distinct diffraction spots on the filter plane. An apertu
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-
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6121J. Appl. Phys., Vol. 89, No. 11, 1 June 2001 Lee, Rosakis, and Freund
placed in this plane serves to filter out the diffraction order
interest, which is then imaged onto the film plane. For o
purpose, either of the61 diffraction orders is of interest, a
will become clear in the following discussion.

Figure 7 illustrates the working principle of CGS in tw
dimensions. Consider an optical wave front incident on
grating pair and let both the gratings have their rulings alo
the x2 axis. A wave front incident on the primary gratin
G1 , is diffracted into several wave fronts denoted
E0 ,E1 ,E21 ,E2 ,E22 , etc. For illustrative purposes, onl
E0 , E1 , andE21 are shown in Fig. 7. Each of these wa
fronts is further diffracted by the second grating,G2 , to give
rise to wave fronts denoted as E0,0,E0,1,
E0,21 ,...,E1,0,E1,1,E1,21 ,...,E21,0,E21,1,E21,21 , etc.
Again, only some of the diffracted wave fronts are show
Now, various sets of parallel diffracted beams are combi
using the filtering lens to form diffraction spot
D11 ,D0 ,D21 ,..., in thefilter plane ~which coincides with
the focal plane of the lens!. For example,E0,1 andE1,0 inter-
fere to give diffraction spotD11 ; E1,21 , E0,0, and E21,1

interfere to giveD0 , etc. An aperture is placed on the filte
plane to block all but theD11 diffraction spot. Subsequently
this diffraction spot is imaged onto the film plane.

Assume that the optical wave front incident on the fi
grating,G1 , is approximately planar and has a local pha
difference given asS(x1 ,x2). The net effect of the two grat
ings is to produce a lateral shift, or ‘‘shearing,’’ of the inc
dent wave front. Thus, the optical wave front along the d
fracted beamE1,0 @given by S(x1 ,x21v)# is shifted by an

FIG. 6. Schematic of the CGS setup in reflection mode.

FIG. 7. Schematic illustrating the working principle of CGS.
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amountv along thex2 direction as compared to the wav
front along the diffracted beamE0,1 @given by S(x1 ,x2)#.
The wave-front shift is parallel to the principal axis of th
gratings, i.e., alongx2 if the grating lines are oriented alon
x1 , as shown in Fig. 7. Moreover, the magnitude of the sh
is a function of the grating separationD and the diffraction
angleu as

v5D tanu, ~6!

where the diffraction angleu is given by

u5arcsin
l

p
, ~7!

with l the wavelength of light andp being the grating pitch.
For a small angle of diffraction, Eqs.~6! and~7! approximate
to

v'Du, ~8!

u'
l

p
. ~9!

Now, consider the interference of the original and shift
wave fronts. The conditions for constructive interferen
may be expressed as

S~x1 ,x21v!2S~x1 ,x2!5n~2!l, n~2!50,61,62,K,
~10!

where, n(2) represents the integer identifying fringes o
served for shearing along thex2 direction. Dividing Eq.~10!
by v gives

S~x1 ,x21v!2S~x1 ,x2!

v
5

n~2!l

v
, n~2!50,61,62,K,

~11!

which for sufficiently smallv may be approximated by

]S~x1 ,x2!

]x2
5

n~2!l

v
, n~2!50,61,62,K. ~12!

Using Eqs.~8! and ~9! in Eq. ~12!, we have

]S~x1 ,x2!

]x2
5

n~2!p

D
, n~2!50,61,62,K. ~13!

Generalizing the result to include wave-front shearing in
ther thex1 or thex2 direction, we have

]S~x1 ,x2!

]xa
5

n~a!p

D
, n~a!50,61,62,K, ~14!

wheren(a) represents the fringes observed for shearing al
the xa direction andaP$1,2%. Equations~14! are the gov-
erning equations for interferograms formed using the te
nique of CGS. A substantially more involved derivation
Eqs. ~14! has been determined by using Fourier optics21

However, the above simple demonstration of the phys
principle of CGS suffices for the purposes of this article.

For a curved surface, the optical wave front may be
terpreted in terms of the topography of the surface as
lows. Consider a specularly reflective specimen who
curved surface~i.e., the reflector! can be expressed as
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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F~x1 ,x2 ,x3!5x32 f ~x1 ,x2!50. ~15!

The unit surface normalN at a generic point (x1 ,x2) of this
curved surface is given by~see Fig. 8!

N5
¹F

u¹Fu
5

2 f ,1e12 f ,2e21e3

A11 f ,1
2 1 f ,2

2
, ~16!

wheref ,a denotes in-plane gradient components of the sp
men surfacex35 f (x1 ,x2), (aP$1,2%), and ei is the unit
vector along thexi axis (i 51,2,3). Now, consider an ini
tially planar wave front incident on the specimen surfa
such that the incident wave front is parallel to the (x1 ,x2)
plane. The unit incident wave propagation vector~vector
normal to the incident wave front! is given as

d052e3 . ~17!

If the specimen surface was flat and occupied the (x1 ,x2)
plane, the unit reflected wave propagation vector~vector nor-
mal to the reflected wave front! would be collinear with the
incident vector and would be given as

d5e3 . ~18!

However, since the specimen surface is curved, the refle
wave front is perturbed, and the unit reflection propagat
vector can be expressed as

d5ae11be21ge3 , ~19!

wherea(x1 ,x2), b(x1 ,x2), andg(x1 ,x2) denote the direc-
tion cosines of the reflected~perturbed! wave front. From the
law of reflection the unit incident wave propagation vec
d0 , the unit reflected wave propagation vectord, and the unit
surface normalN, are coplanar and related by~see Fig. 8!

d•N5~2d0!•N5e3•N. ~20!

This leads to the relation

d5~2e3•N!N2e3 . ~21!

Substituting Eq.~16! into Eq. ~21! yields

d5ae11be21ge35
2~2 f ,1e12 f ,2e21e3!

11 f ,1
2 1 f ,2

2 2e3 . ~22!

Thus,

FIG. 8. Reflection of the incident wave front from the curved specim
surface.
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a5
22 f ,1

11 f ,1
2 1 f ,2

2 , b5
22 f ,2

11 f ,1
2 1 f ,2

2 , g5
12 f ,1

2 2 f ,2
2

11 f ,1
2 1 f ,2

2 .

~23!

To determine the change in the optical path length due
reflection from the curved specimen surface, as compare
reflection from a flat reference surface, consider the pl
containing the unit incident and reflected vectors at any
neric point (x1 ,x2), as shown in Fig. 8. The net change
optical path length at point (x1 ,x2) is given as

S~x1 ,x2!5uOA~x1 ,x2!u1uOB~x1 ,x2!u

5US f ~x1 ,x2!

d~x1 ,x2!•e3
Dd~x1 ,x2!U1u f ~x1 ,x2!e3u.

~24!

Thus,

S~x1 ,x2!5 f ~x1 ,x2!S 2

12 f ,1
2 2 f ,2

2 D . ~25!

Assumingu¹2f u!1 and substituting Eq.~25! into Eq. ~14!,
we get

] f ~x1 ,x2!

]xa
'

n~a!p

2D
, n~a!50,61,62,K, ~26!

where aP$1,2%. Equations~26! are the basic governing
equations that relate CGS fringe contours to in-plane gra
ents of the specimen surfacex35 f (x1 ,x2).

Now, in order to relate CGS interferograms of a giv
surface to its curvature, consider a curved specimen
shown in Fig. 9~a!. The normal at a pointP(j1 ,j2) on the
surface is defined as

a35
a13a2

ua13a2u
, ~27!

wherea1 and a2 are unit vectors tangent to the curviline
coordinates axes (j1 ,j2). Unit tangent vectorsa1 anda2 are
given in terms of position vectorr (j1 ,j2 ,j3) of the point
P(j1 ,j2) asaa5]r /]ja , aP$1,2%.

The rate at whicha3 varies between neighboring poin
provides a measure of curvature at the point of interest. N

da35
]a3

]ja
dja . ~28!

Note that]a3 /]ja , are tangent vectors sincea3•(]a3 /]ja)
50. The curvature tensork is defined as the projections o
the rate of change vectors]a3 /]ja along unit tangent vectors
a1 anda2 as

kab52
]a3

]ja
•ab , a,bP$1,2%. ~29!

Or, in terms of position vectorr (j1 ,j2 ,j3),

kab5a3 •
]2r

]ja]jb
, a,bP$1,2%. ~30!

n
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kab is the symmetric curvature tensor whose compone
k11 and k22 are termed as the ‘‘normal curvatures’’ an
k12(5k21) as the ‘‘twist.’’ The principal values ofkab are
termed as the principal curvatures.

Consider the case of a shallow surface,x35 f (x1 ,x2), as
shown in Fig. 9~b!. The curvilinear coordinate systems r
duce to

x15j1 , x25j2 , x35 f̂ ~j1 ,j2!5 f ~x1 ,x2!, ~31!

and

r ~x1 ,x2 ,x3!5x1e11x2e21 f ~x1 ,x2!e3 . ~32!

Thus,

kab5a3•
]2r

]xa]xb
5

f ,ab

A11 f ,1
2 1 f ,2

2
, a,bP$1,2%. ~33!

For small curvatures,u¹2f u!1, and thus

kab' f ,ab , a,bP$1,2%. ~34!

Substituting Eq.~26! into Eq. ~34!, we get the basic equa
tions that relate CGS fringes to specimen curvature,

FIG. 9. ~a! Curved specimen surface described in terms of curvilinear
ordinates, and~b! shallow surface with small curvatures.
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kab~x1 ,x2!'
]2f ~x1 ,x2!

]xa]xb
'

p

2D S ]n~a!~x1 ,x2!

]xb
D ,

~35!
n~a!50,61,62,K,

where,aP$1,2%. Equation~35! is the principal governing
equation for determining curvature tensor fieldskab(x1 ,x2),
(a,bP$1,2%), from CGS interferograms. In this manne
CGS interferograms provide a full-field technique for det
mining the instantaneous value of the specimen curva
tensor at any point (x1 ,x2).

V. CGS FRINGE ANALYSIS USING THE FOURIER
TRANSFORM

In this section, we present the methodology used in
tomatically postprocessing the CGS fringe patterns captu
in this work by a high-resolution charge-coupled-devi
~CCD! camera. Our goal is to take advantage of the obtain
high-resolution, digital information and to increase our da
accuracy. To achieve this, a Fourier transform phase m
surement technique22 is used to extract the full-field phase
angle information from the CGS images and to differenti
it in order to obtain the desired curvature fields. The int
ference fringe patterns are captured in real time by the C
camera and the video signal is subsequently forwarded
PC-based digital processing system. The principles invol
in this procedure are described below.

In general, the intensity field of the CGS interferen
fringe patterns can be expressed by

I ~x1 ,x2!5a~x1 ,x2!1b~x1 ,x2!cosd~x1 ,x2!, ~36!

whereI (x1 ,x2) is the intensity of the fringe pattern at a fie
point (x1 ,x2) on the specimen surface,a(x1 ,x2) and
b(x1 ,x2) are its background intensity level and the fring
visibility, respectively, andd(x1 ,x2) is the phase-angle term
contributed by the deformation of the specimen. This inte
sity distribution can also be expressed in terms of a sum
complex field quantities as follows:

I ~x1 ,x2!5a~x1 ,x2!1c~x1 ,x2!1c* ~x1 ,x2!, ~37!

wherec(x1 ,x2)5 1
2 b(x1 ,x2)eid(x11 ,x2), andc* (x1 ,x2) is its

complex conjugate.
By taking the Fourier transform of this intensity distr

bution, we get

I ~v1 ,v2!5A~v1 ,v2!1C~v1 ,v2!1C* ~2v1 ,2v2!,

~38!

with v1 andv2 being the spatial frequencies in the transfo
domain, andC* (2v1 ,2v2) the conjugate symmetric o
C(v1 ,v2). A(v1 ,v2) contains the constant- and low
frequency information due to slow variations of the intens
background.C(v1 ,v2) andC* (2v1 ,2v2) carry basically
the same information. By using bandpass filtering in the s
tial frequency domain,A(v1 ,v2) and either ofC(v1 ,v2) or
C* (2v1 ,2v2) are filtered out. The remaining spectru
C(v1 ,v2) or C* (2v1 ,2v2) contains the required phase
angle informationd(x1 ,x2), so that its inverse Fourier trans

-
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form gives us back either complexc(x1 ,x2) or c* (x1 ,x2),
respectively. The phase distributiond(x1 ,x2) is then ob-
tained as follows:

d~x1 ,x2!5tan21
Im@c~x1 ,x2!#

Re@c~x1 ,x2!#
, ~39!

where Re@ # and Im@ # represent real and imaginary part
respectively.

To verify the above Fourier transform fringe methodo
ogy, a well-defined spherical wave front was examined,
shown in Fig. 10~a!. This spherical wave front is generate
by passing a collimated laser beam through a planocon
lens of focal lengthf l (5546 mm), and a known, constan
radius of curvature 2f l . We will now apply the Fourier
transform technique to recover this curvature accurately.
spherical wave front passing through the planoconvex l
can be described by

FIG. 10. CGS fringe pattern of spherical wave front~p525mm and D
522 mm!. ~a! CGS fringe patterns, and~b! intensity profile alongA–B in
~a!.
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S~x1 ,x2!5
x1

21x2
2

2 f l
. ~40!

When grating lines are oriented such that their principal
rection is parallel to thex2 axis, CGS provides vertical gra
dient component information in the form of parallel fringe
whose equation is given by

]S

]x2
5

x2

f l
5

n~2!p

D
. ~41!

Figure 10~a! shows the raw digitally recorded CGS image
The noisy intensity variation corresponding to a vertic
cross sectionAB is displayed in Fig. 10~b!. The Fourier
transform is then applied, and its two-dimensional pow
spectrum is shown here in Fig. 11~a!, and the corresponding
cross section in Fourier space (A* B* ) is displayed in Fig.
11~b!. By applying the procedure outlined before, throu

FIG. 11. Two-dimensional Fourier transform of spherical wave front sho
in Fig. 10. ~a! Fourier transform magnitude in the frequency doma
(v1 ,v2), and~b! magnitude variation alongA* –B* in ~a!.
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bandpass filtering, we invert the transform and display
two-dimensional ‘‘wrapped’’ phase-angle fieldd(x1 ,x2) in
Fig. 12~a! and the corresponding cross-sectional informat
in Fig. 12~b!. In Fig. 12, the phase angle is wrapped or
stricted to vary between the values of2p andp. It should be
noted that the filtering process has eliminated the low-
high-frequency noise, resulting in information which is re
tively ‘‘crisp’’ compared to that displayed in Figs. 10~a! and
10~b!.

The results of Fig. 12 are then ‘‘unwrapped’’ by extrap
lating between the discrete peaks and assigning a contin
spectrum of fringe numbers, thus creating the smooth c
tours of phase information and fringe order shown in Fi
13~a! and 13~b!, respectively. The fringe order represents t
linear first partial derivative ofS(x1 ,x2) with respect tox2 .
The curvature is then obtained by numerically differentiat
this variation once more with respect tox2 .

A three-dimensional representation of the entire cur

FIG. 12. Wrapped phase information by inverse Fourier transform u
bandpass filtering:~a! wrapped phase variation, and~b! wrapped phase
variation alongA–B in ~a!.
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ture fieldk22(x1 ,x2) obtained by this method is shown he
is Fig. 14. Notwithstanding small fluctuations that res
from the differentiation procedure, the level of curvature
constant and equal to the known curvature of the lensk22

5(2 f l)
21'1092 mm.

VI. APPLICATION OF CGS FOR CURVATURE
MEASUREMENT OF A FILM–SUBSTRATE SYSTEM

The technique of CGS described in the previous secti
was applied to determine instantaneous full-field maps
curvature of a film–substrate system. The behavior of a s
tem consisting of a thin Al film of thicknesshf56 mm de-
posited on a circular Si wafer of radiusR525.4 mm and
nominal thickness ofhs5105mm was studied in the labora
tory. The wafer was a single crystal with a~100! normal
orientation and the film had a fine-grained columnar po
crystalline microstructure. The wafer was flat prior to fil
deposition at a temperature of 87.5 °C, where, after, it w

gFIG. 13. Unwrapped phase information:~a! unwrapped phase variation, th
lines indicate the same fringe order contours; and~b! fringe order variation
A–B in ~a!.
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cooled to room temperature. The temperature was t
cycled between room temperature and the film deposi
temperature of 87.5 °C. This was done in a temperature c
trol chamber over approximately a 2 h time cycle. It was
assumed that within this range the deformation remai
elastic.

During thermal cycling, the deformation of the samp
was remotely monitored through a quartz window attach
to the heating chamber. The measurement was performe
means of the optical coherent gradient sensing method a
CCD camera which continuously recorded the CGS fring
The CGS method is noninvasive, allows for continuous
servation over the full field of view. Standard interferomet
methods are sensitive to rigid-body motion of the samp
and displacement data thus obtained must be differenti
twice numerically to obtain curvature fields. The CG
method, on the other hand, permits a direct measure of
face gradients; it is, therefore, insensitive to rigid-body m
tions and in addition only one differentiation of data is r
quired to extract the curvature fields. The technique
capable of resolving radii of curvature up to approximat
10 km.17

In Fig. 15, a set of CGS fringe patterns captured by
CCD camera at the Al film deposition temperature of 87.5
are shown. The bright fringe lines are level curves of slope
the verticalx2 direction of each figure, while the spacing
the lines is an indicator of curvature of material lines in t
vertical direction. Each image corresponds to differe
sample rotations by increments ofp/4. Figures 15~a!, 15~b!,
15~c!, and 15~d! reveal the large spacing of fringes in th
central portion of the sample. This implies that the Al fil
thickness is rather uniform there since the Si substrate
flat before deposition.

However, high fringe density near the edge clearly re
resents nonuniform film thickness in a boundary layer
approximately 6 mm. From a simple profile calculation, u
ing fringe information in this area, a simple parabolic equ
tion was found to provide a good fit of the nonuniform thic
ness profile, which is shown schematically here in Fig.
This higher fringe density area starts atr .0.75R, and the

FIG. 14. Normalized curvature variationk22 /k lens by using k22(x1 ,x2)
'p/2D(]n(2)(x1 ,x2)/]x2).
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FIG. 15. Set of CGS fringe patterns for the Al film deposited on the
substrate at deposition temperature 87.5 °C. Images~a!, ~b!, ~c!, and ~d!
correspond to different sample orientations~f50, p/4, p/2, and 3p/4, re-
spectively!.
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film thickness profile then is approximated by a parabo
equation, as shown in Fig. 16.

After recording the thickness profile, the system w
gradually cooled from deposition temperature down to ro
temperature. A sequence of CGS interferograms corresp

FIG. 16. Al-film thickness profile; hf56 mm for r<0.75R, h
5hfA12(r 23R/4)2/(R/4)2 for r.0.75R.
Downloaded 21 Mar 2002 to 131.215.99.202. Redistribution subject to A
c

s

d-

ing to this cooling process are shown in Fig. 17. Images~a!
and ~c! correspond to temperature changes of 7.5 °C wh
images ~b! and ~d! correspond to temperature changes
52.5 °C. Images~a!, ~b! and ~c!, ~d! correspond to two dif-
ferent sample orientations~f5p/4 and 3p/4, respectively!.
In images~a! and ~c!, the CGS fringes are similar and ar
horizontal in the center. The similarity between~a! and ~c!
indicates that at that temperature the wafer, although
spherical, remains axially symmetric everywhere. In imag
~b! and ~d!, the curvature has become quite large, as e
denced by the close spacing of the fringes. It is clear that
sample has taken on a curved shape, which is neither
symmetric nor spatially uniform, a situation which is clear
deduced by the pronounced nonuniformity of the fringes
Fig. 17~d!. Magnified views of the central region of sample
~b! and~d! of Fig. 17 are shown in Fig. 18. It should be note
that the biggest fringe density~highest curvature! and the
lowest fringe density~lowest curvature! are observed in
FIG. 17. Series of CGS fringe patterns for an Al film deposited on a thin Si substrate subjected to temperature changes of 7.5 °C@~a! and~c!# and 52.5 °C@~b!
and ~d!#, respectively. Different sample orientations,~f5p/4 @~a!, ~b!# and 3p/4 @~c!, ~d!#!, are shown.
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fringe patterns corresponding to the two orthogonal dir
tions f5p/4 andf53p/4, respectively.

These seem to be principal directions of curvature. Fo
case in which the deformations are large but the deform
shape is still axisymmetric, similar to the situation illustrat
in images~a! and~c! of Fig. 17, the distribution of curvature
along four radial surface lines at angles ofp/4 to each other
was extracted from the data. The results are displayed in
19 in the form of radial curvatureKr vs r /R along these
radial lines. Figure 19 clearly shows that the curvature,
though largely still axisymmetric, is clearly nonuniform, in
creasing steadily from the center of the wafer to the ou
edge. The solid line in Fig. 19 is the curvature distributi
predicted from a finite-element simulation of the sample
der the conditions of the experiment. This calculation ta
into consideration the nonuniform thickness of the film
obtained by the experimental measurements and as app
mated in Fig. 16. The general features of this radial variat
are described in the earlier section of this article.

It is clear from Fig. 19 that the numerics captures w
the experimentally measured curvature variation. Throu
out most of the specimen centerr ,0.75R does a good job in
predicting the curvature right at the specimen rim but und
estimates the maximum curvature atr;0.8R by approxi-
mately 15%. This discrepancy is most probably related to
fact that the calculation does not properly take into acco

FIG. 18. Magnified CGS fringe patterns near the center portion of
sample at temperature changes of 52.5 °C@see Figs. 17~b! and 17~d!, respec-
tively#.
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natural specimen imperfections, and the substrate anisotr
However, both experiment and numerics clearly exibit t
physical picture discussed in the theoretical part of this
ticle. Indeed, for a temperature change atDT;22.5 °C@cor-
responding to the value of normalized mismatch strainS of
1.5, where «m5(aAl2aSi)DT#, the deformation is still
largely radially symmetric as discussed earlier~see Fig. 5!.
However, the specimen is rather flat in the center, becom
increasingly curved towards the edges.

We now turn to investigating the bifurcation behavi
discussed in Sec. III. We concentrate our attention on a sm
area of the sample near its center and monitor the curva
there as a function of thermally induced mismatch strain
sulting from cooling the sample from its deposition tempe
ture to room temperature. Figure 20 shows the observed
calculated curvatures nearr 50 as functions of the normal
ized mismatch strainS as the temperature change becom
large enough to drive the behavior of the wafer into the po
bifurcation regime. Again, the results are presented in
nondimensional form, which is consistent among all resu
reported here. The two dashed curves are measured curv
of lines in the directions of largest curvature (f5p/4) and
smallest curvature (f53p/4) on the asymmetric deforma
tion branch. It was anticipated in Fig. 5 of Sec. III that th
bifurcation point would be largely obscured by even ve
small imperfections in the system, and this seems to be
case here. Nonetheless, it appears that the deformation
longer axisymmetric whenS has increased beyond 1.5
whereas it appears to be reasonably axisymmetric up to
point. As before, the exact sample geometry tested in
laboratory was simulated by means of the finite-element
culation, and the solid curves in Fig. 20 represent the res
The predicted mismatch strain level for bifurcation is a
proximatelyS51.4. The film and substrate moduli differ i
this case, so this system does not fall strictly within the cl
represented by Fig. 5 in Sec. III. The curvature as obtai

e

FIG. 19. Curvature of a radial line vs distance along four radial lines wh
the deformation is still axisymmetric but beyond the linear range. The
perimental data points are from separate lines atp/4 to each other. The solid
line is from a finite-element simulation of the sample (DT522.5 °C).
IP license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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from the simulation is subject to a small uncertainty beca
it is obtained by differentiating nodal displacement da
Given the anticipated strong effect of natural imperfectio
on the bifurcation point, the agreement between the exp
mentally observed mismatch strain for bifurcation and
equivalent theoretically predicted value is surprisingly go
Beyond this mismatch strain the results remain qualitativ
very similar, clearly showing the tendency of the sample
assume a more cylindrical shape~curvature along one direc
tion increasing many times more than its orthogonal coun
part!.

FIG. 20. Radial curvature near the center of the sample as mismatch s
is increased through the bifurcation point. The radial lines identified af
5p/4 and 3p/4 are those which undergo maximum and minimum curv
ture, respectively, in the postbifurcation range. The dashed lines are
the experiment and the solid lines with matching symbols are from a fin
element simulation of the sample.
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